
Cyprian's Last TheoremMartin Kochanski9 May 2007Cyprian's Last Theorem states that the equation
n∑

1

(N − i)n = Nn(henceforth �CLE�) has no integer solutions < n, N > other than the obvious<2,1>, <2,5>, and <3,6>: that is, (−1)2 + 02 = 12, 32 + 42 = 52, and 33 +
43 + 53 = 63.The interesting thing about this theorem is that it is so very speci�c (notonly must the nth powers be consecutive but they must add up to the next nthpower) that it ought to be easy to prove by elementary methods. It is, after all,so obviously true.Either it is unexpectedly di�cult to prove or I am being dim. In either case,here is the story so far.Some notation

CLFn(N) =

n∑

1

(1 −
i

N
)nso that an equivalent statement of the theorem is �CLFn(N) = 1 has nointeger solutions other than those stated�.We will also use N(n) to denote �the largest value of N that satis�esCLFn(N) =

1�, so that the theorem is �N(n) is not an integer if n > 3�, and, for convenience,we will de�ne k(n) = N(n)/n.Even values of nLemma:For all integers i,
i2

m

≡ 0 or 1 (mod 2m+1)(the proof is by induction). 1



Now let us write n = 2ml, where l is odd, and let us consider residues modulo
2m+1. Then

n∑

1

(N − i)n ≡
1

2
n = 2m−1lsince there are an even number of terms and their nth powers will be 1 forodd terms and 0 for even ones. From the lemma it follows that Nn must beeither 0 or 1 modulo 2m+1. So if CLE is satis�ed, either 2m−1l must be divisibleby 2m+1, which is impossible, or 2m−1l − 1 must be divisible by 2m+1, whichcan only happen if m = 1.So for CLE to be satis�ed for even n, we must have

n ≡ 2 (mod 4)Next, consider residues modulo 8. If n ≡ 2 (mod 4), the consecutive nthpowers modulo 8 are 0, 1, 0, 1, 0, 1,... so that (as before) the sum of n nthpowers modulo 8 is 1
2n. Thus we have either 1

2n ≡ 0, which is impossible, or
1
2n ≡ 1. In other words, for CLE to be satis�ed for even n we must have

n ≡ 2 (mod 16)Odd values of nIf n is odd then
n∑

1

(N − i)n ≡ 0 (modn)(Proof: the series is equivalent to ∑(n−1)/2
−(n−1)/2 in, but since n is odd, (−i)n + in =

0). This implies n | Nn. If n is square-free (ie. has no repeated factors) then itfurther implies n | N , which implies that k = N/n is an integer. Since we shallshow later in this paper that 1 < k(n) < 2 for n > 3, this is a contradiction andso CLE cannot be satis�ed. (For an example of n | Nn
; n | N , consider n = 9and N = 12. 129 is divisible by 9, but 12 is not).Next, consider residues modulo 8. If n is odd then the consecutive nthpowers modulo 8 are 0, 1, 0, 3, 0, 5, 0, 7,... To get a perfect nth power asthe sum of the previous n nth powers, consider the di�erent possible values of

n mod 8:1: there is no way of getting the sum of 1 term in the series to equal thenext term (ie. there are no identical consecutive numbers in the series).3: the only ways of getting the sum of 3 consecutive terms in the series toequal the next term are 3 + 0 + 5 = 0 and 7 + 0 + 1 = 0.5: there is no way of getting the sum of 5 terms in the series to equal thenext term. 2



7: any series of 7 terms beginning with a non-zero value will add up to 0and consequently equal the next term in the series.Thus for CLE to be satis�ed for odd n we must have
n ≡ 3 (mod 4)and n must have at least one repeated factor.[Note also that if we denote by sq(n) the factor by which n fails to be square-free (so that sq(n) equals n divided by all the primes that divide n: for example,

sq(6) = 1, sq(18) = 3, sq(54) = 9) then k(n) must be an integer multiple of
1/sq(n). This may come in useful in further research, since it will be seen that
k(n) → 1/ln2 very rapidly as n → ∞.]Evaluating N(n)We have CLFn(N) =

∑n
1 (1 − i/N)n.But (1 − i/N)N < e−i and (1 − i/N)N → e−i as n → ∞,whence (1 − i/N)N < e−in/N = e−i/k.Thus

CLFn(N) < e−1/k + e−2/k + e−3/k + ... =
e−1/k − e−(n+1)/k

1 − e−1/kwhich gives us the simpler inequality
CLFn(N) <

e−1/k

1 − e−1/kSince CLFn(N) is an increasing function of N and hence of k, and so isthe right-hand side of this inequality, it follows that if k0 is the value of k thatmakes the RHS equal to 1, the value of k that makes CLFn(N) = 1 will begreater than k0.But RHS=1 means e−1/k = 1 − e−1/k, which means k0 = 1/ln2. Thus wehave
k(n) > 1/ln2Numerical observationsSolving CLFn(N) = 1 numerically, the following facts emerge:

k(n) is a decreasing function of n. Not only is it bounded below by 1/ln2but it actually converges to it.
N(n) = 1.5 + n

ln2 + O(1/n). This formula is remarkably accurate: for
n > 10 the value of the O(1/n) term is about 1

400n .Equivalently, we can say k(n) = 1
ln2 + 1.5

n + O(1/n2).Here is a table of some calculated values:3



n 1.5 + n/ln2 N(n)2 4.385390 5.0000004 7.270780 7.3294728 13.041560 13.04270916 24.583121 24.58327132 47.666241 47.66632064 93.832483 93.832523128 186.164965 186.164986256 370.829930 370.829940SummaryFor odd n the theorem is proved unless n has a repeated prime factor and
n ≡ 3 (mod 4).For even n the theorem is proved unless n ≡ 2 (mod 16).Calculations show that for the theorem to be false, N(n) = 1.5 + n

ln2 + ε(n)must be an integer, where ε(n) ∼ 1
400n .Future directionsIt would be delightful to have a proof of the formula N(n) = 1.5+ n

ln2 +O(1/n)rather than having to deduce it from the observed results of computations.On the modular arithmetic side, the case of non-square-free n needs to belooked into in more detail.On the numerical side, we can rephrase the theorem in terms of rationalapproximations to 1/ln2: the theorem holds for large n as long as n
ln2 is nevertoo close to a half-integer. There is a whole section of Hardy and Wright onapproximation of irrationals by rationals that I have never read thoroughlyenough.Another line of attack is the observation that when n is not square-free then

k(n) must be a multiple of 1/sq(n). Can we combine this with the observednumerical formula for k(n) and thus obtain a contradiction? It may be that
k(n) always manages to squeeze so close to 1/ln2 that there is no room for itto be a multiple of 1/sq(n).A di�erent line of approach: Bernoulli polynomialsBernoulli polynomials are an extension of Bernoulli numbers. They obey thisrecurrence relation:

Bn(x) = (B + x)nwhere �Bn� is replaced by �Bn� after the right-hand side has been expandedsymbolically. They can also be derived as coe�cients in the following power4



series expansion:
tetx

et − 1
=

∞∑

n=0

Bn(x)
tn

n!The hopeful fact about Bernoulli polynomials in our case is that
b∑

i=a

in =
1

n + 1
{Bn+1(b + 1) − Bn+1(a)}which means that the equation whose solutions we are investigating,

n∑

1

(x − i)n = xnboils down to
1

n + 1
{Bn+1(x) − Bn+1(x − n)} = xnor even

Bn+1(x) − Bn+1(x − n) = (n + 1)xnNow Bn+1(x) is a polynomial of degree n + 1 in x, so that in the area we'relooking in, with x ≈ n/ln2, x − n ≈ 0.3x, which means that Bn+1(x − n) willbe in�nitesimal in comparison with Bn+1(x), so that the simpli�ed equation
Bn+1(x) = (n + 1)xnwill probably end up having the same asymptotic behaviour as the original.Another hopeful line of inquiry is that Bn+1(x) is the coe�cient of tn+1/(n+

1)!in the expansion of tetx/(et − 1), and xn is the coe�cient of tn/n! in theexpansion of etx, so that (n + 1)xn is the coe�cient of tn+1/(n + 1)! in theexpansion of tetx. As it stands, the only way to make use of this correspondenceis to di�erentiate both etx/(et − 1) and etx n times with respect to t - but it isstill good to �nd some sort of an occurrence of an exponential function, giventhat we are trying to get a reason for ln 2 appearing in the result.ADDITIONAL MATERIALSketch of an extension for even n(This has been copied from the manuscript and has not yet been checked in detail:don't read it until it has been checked and corrected).We have the standard number-theoretic function φ(n), which is de�ned by
φ(p) = p− 1 and φ(pq) = φ(p)φ(q). Let us de�ne an alternative, φ̂(n), which isde�ned by φ̂(p) = p − 1 and φ̂(pq) = LCM(φ̂(p)φ̂(q)).Lemma: 5



∑n−1
0 in 6= 0 (modM) only if φ̂(M) | n.Unchecked proof:If φ̂(M) . n then ∃j such that jn 6= 1 (modM) and j is relatively prime to

M . (this assertion needs checking as well).Then, still working modulo M :By relative primality, 0, j, 2j, ... ..., (n−1)j is a permutation of 0, 1, 2, ... ...n−
1, so that ∑

(ij)n =
∑

in,or jn
∑

in =
∑

in, or (jn − 1)
∑

in = 0,which implies (jn − 1)
∑

in = 0, since jn 6= 1 (modM).(this needs correcting, since what we actually need is not only jn − 1 6=
0 (modM) but also that jn − 1 should be relatively prime to M).Anyway, if the lemma can be shown to hold to the extent to which it isneeded, we can put M = n and deduce that if φ̂(M) . n then Nn ≡ 0 (modn),which means that we once more get �for CLE to be satis�ed, n must have atleast one square factor�, just as in the case of odd n. But even assuming thatthe proof can be made to work, this is still a weaker result than in the odd case,since φ̂(n) | n for n = 6 and n = 42, to give just two examples.There is a further obscure note in the manuscript: �If φ̂(n) | n then allpowers are 1 mod n, and a fortiori 1 | p (| n). This makes it harder to constrain
N , but not impossible�.
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