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Cyprian’s Last Theorem states that the equation
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(henceforth “CLE”) has no integer solutions < n, N > other than the obvious
<2,1>, <2,5>, and <3,6>: that is, (—1)2 + 0% = 12, 32 + 42 = 52 and 3% +
43 4+ 5% = 6°.

The interesting thing about this theorem is that it is so very specific (not
only must the nth powers be consecutive but they must add up to the next nth
power) that it ought to be easy to prove by elementary methods. It is, after all,
so obviously true.

Either it is unexpectedly difficult to prove or I am being dim. In either case,
here is the story so far.

Some notation

CLF,(N)=> (1- %)"
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so that an equivalent statement of the theorem is “CLF,(N) = 1 has no
integer solutions other than those stated”.

We will also use N (n) to denote “the largest value of N that satisfies CLF, (N) =
17, so that the theorem is “N(n) is not an integer if n > 3”, and, for convenience,
we will define k(n) = N(n)/n.

Even values of n

Lemma:
For all integers ¢,

2" = 00r1 (mod2™)

(the proof is by induction).



Now let us write n = 2™, where [ is odd, and let us consider residues modulo
2m+1 Then

n

Z(N —)" =

1

n=2m"1
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since there are an even number of terms and their nth powers will be 1 for
odd terms and O for even ones. From the lemma it follows that N™ must be
either 0 or 1 modulo 2™*!. So if CLE is satisfied, either 2™ '] must be divisible
by 2™*1, which is impossible, or 2™~1] — 1 must be divisible by 2™*!, which
can only happen if m = 1.

So for CLE to be satisfied for even n, we must have

n =2 (mod4)

Next, consider residues modulo 8. If n = 2(mod4), the consecutive nth
powers modulo 8 are 0, 1, 0, 1, 0, 1,... so that (as before) the sum of n nth
powers modulo 8 is %n Thus we have either %n = 0, which is impossible, or
1

51 = 1. In other words, for CLE to be satisfied for even n we must have

n = 2 (mod 16)

Odd values of n

If n is odd then

n

Z(N —14)" =0 (modn)

1

(Proof: the series is equivalent to ZT&?{;Q i", but since n is odd, (=) 4" =

0).

This implies n | N™. If n is square-free (ie. has no repeated factors) then it
further implies n | N, which implies that k¥ = N/n is an integer. Since we shall
show later in this paper that 1 < k(n) < 2 for n > 3, this is a contradiction and
so CLE cannot be satisfied. (For an example of n | N™ % n | N, consider n = 9
and N = 12. 129 is divisible by 9, but 12 is not).

Next, consider residues modulo 8. If n is odd then the consecutive nth
powers modulo 8 are 0, 1, 0, 3, 0, 5, 0, 7,... To get a perfect nth power as
the sum of the previous n nth powers, consider the different possible values of
nmod 8:

1: there is no way of getting the sum of 1 term in the series to equal the
next term (ie. there are no identical consecutive numbers in the series).

3: the only ways of getting the sum of 3 consecutive terms in the series to
equal the next term are 3+0+5=0and 7+ 0+ 1 =0.

5: there is no way of getting the sum of 5 terms in the series to equal the
next term.



7: any series of 7 terms beginning with a non-zero value will add up to 0
and consequently equal the next term in the series.
Thus for CLE to be satisfied for odd n we must have

n =3 (mod4)

and n must have at least one repeated factor.

[Note also that if we denote by sq(n) the factor by which n fails to be square-
free (so that sq(n) equals n divided by all the primes that divide n: for example,
sq(6) = 1, sq(18) = 3, sq(54) = 9) then k(n) must be an integer multiple of
1/sq(n). This may come in useful in further research, since it will be seen that
kE(n) — 1/In2 very rapidly as n — 0.

Evaluating N(n)

We have CLF,(N) =Y7(1—i/N)™
But (1 —i/N)N¥ <e % and (1 —i/N)N — e % asn — oo,
whence (1 —i/N)N < e="/N = ¢=i/k,
Thus
o—1/k _ o—(nt1)/k

1—e1/k

CLF,(N) < e Yk pe72/k fo=3/k =

which gives us the simpler inequality

o—1/k

Since CLF,(N) is an increasing function of N and hence of k, and so is
the right-hand side of this inequality, it follows that if kg is the value of k that
makes the RHS equal to 1, the value of k that makes CLF,(N) = 1 will be
greater than k.

But RHS=1 means e~'/* = 1 — e~'/* which means ko = 1/In2. Thus we
have

k(n) > 1/In2

Numerical observations

Solving CLF,,(N) = 1 numerically, the following facts emerge:

k(n) is a decreasing function of n. Not only is it bounded below by 1/In2
but it actually converges to it.

N(n) = 1.5+ %5 + O(1/n). This formula is remarkably accurate: for
n > 10 the value of the O(1/n) term is about 5.

Equivalently, we can say k(n) = 15 + 22 + O(1/n?).

Here is a table of some calculated values:



n | 1.5+ n/in2 | N(n) |
2 4.385390 5.000000
4 7.270780 7.329472
8 13.041560 | 13.042709
16 24.583121 24.583271
32 47.666241 47.666320
64 93.832483 | 93.832523
128 | 186.164965 | 186.164986
256 | 370.829930 | 370.829940

Summary

For odd n the theorem is proved unless n has a repeated prime factor and
n = 3 (mod4).

For even n the theorem is proved unless n = 2 (mod 16).

Calculations show that for the theorem to be false, N(n) = 1.5+ ;75 +¢&(n)
must be an integer, where £(n) ~ 55

Future directions

It would be delightful to have a proof of the formula N(n) = 1.5+ ;%5 4+ O(1/n)
rather than having to deduce it from the observed results of computations.

On the modular arithmetic side, the case of non-square-free n needs to be
looked into in more detail.

On the numerical side, we can rephrase the theorem in terms of rational
approximations to 1/In2: the theorem holds for large n as long as ;5 is never
too close to a half-integer. There is a whole section of Hardy and Wright on
approximation of irrationals by rationals that I have never read thoroughly
enough.

Another line of attack is the observation that when n is not square-free then
k(n) must be a multiple of 1/sg(n). Can we combine this with the observed
numerical formula for k(n) and thus obtain a contradiction? It may be that
k(n) always manages to squeeze so close to 1/In2 that there is no room for it

to be a multiple of 1/sq(n).

A different line of approach: Bernoulli polynomials

Bernoulli polynomials are an extension of Bernoulli numbers. They obey this

recurrence relation:
Bu(x) = (B +a)"

where “B™” is replaced by “B,,” after the right-hand side has been expanded
symbolically. They can also be derived as coefficients in the following power



series expansion:

te'” & ¢
et—1 ZBn(x)E
n=0
The hopeful fact about Bernoulli polynomials in our case is that

1

Zi" = o1 Brnnb 1) = Baja(a)}

which means that the equation whose solutions we are investigating,

Z(x —i)" ="
1

boils down to

1
n+1

{Bus1(2) = B —n)} = a”
or even
Bur(&) = Busa(@ —n) = (n+ 1)a”

Now B,+1(z) is a polynomial of degree n + 1 in z, so that in the area we’re
looking in, with z ~ n/in2, x — n ~ 0.3z, which means that B,,+1(z — n) will
be infinitesimal in comparison with B,,4+1(z), so that the simplified equation

Bua(x) = (n+ 1)z"

will probably end up having the same asymptotic behaviour as the original.

Another hopeful line of inquiry is that B,,1(z) is the coefficient of "1 /(n+
1)!in the expansion of te'®/(e! — 1), and z™ is the coefficient of ¢"/n! in the
expansion of e*®, so that (n + 1)z™ is the coefficient of t"*1/(n + 1)! in the
expansion of te'®. As it stands, the only way to make use of this correspondence
is to differentiate both e'*/(e? — 1) and e!* n times with respect to ¢ - but it is
still good to find some sort of an occurrence of an exponential function, given
that we are trying to get a reason for In 2 appearing in the result.

ADDITIONAL MATERIAL

Sketch of an extension for even n

(This has been copied from the manuscript and has not yet been checked in detail:
don’t read it until it has been checked and corrected).
We have the standard number-theoretic function ¢(n), which is defined by

¢(p) =p—1 and ¢(pq) = ¢(p)¢(q)- Let us define an alternative, ¢(n), which is

defined by ¢(p) = p — 1 and ¢(pg) = LCM (¢(p)o(q)).
Lemma:



M

0=tm £ 0 (mod M) only if ¢(M) | n.
Unchecked proof:
If ¢(M) ¢ n then 35 such that j™ # 1 (mod M) and j is relatively prime to

. (this assertion needs checking as well).

Then, still working modulo M:
By relative primality, 0, 7, 27, ... ... ,(n—1)j is a permutation of 0,1, 2, ... ... n—

so that > (ij)™ = > i",

or j"> " =3 i", or (" —1)> i" =0,

which implies (5 — 1) > 4™ = 0, since j™ # 1 (mod M).

(this needs correcting, since what we actually need is not only j® — 1 #

0 (mod M) but also that j™ — 1 should be relatively prime to M).

Anyway, if the lemma can be shown to hold to the extent to which it is

needed, we can put M = n and deduce that if ¢(M) +n then N™ = 0 (modn),
which means that we once more get “for CLE to be satisfied, n must have at
least one square factor”, just as in the case of odd n. But even assuming that
the proof can be made to work, this is still a weaker result than in the odd case,
since qg(n) | n for n =6 and n = 42, to give just two examples.

There is a further obscure note in the manuscript: “If ¢E(n) | » then all

powers are 1 mod n, and a fortiori 1 | p (] n). This makes it harder to constrain
N, but not impossible”.



