Cyprian's Last Theorem

Martin Kochanski

9 May 2007

Cyprian's Last Theorem states that the equation

$$\sum_{1}^{n} (N-i)^n = N^n$$

(henceforth "CLE") has no integer solutions < n, N > other than the obvious <2,1>, <2,5>, and <3,6>: that is, $(-1)^2 + 0^2 = 1^2$, $3^2 + 4^2 = 5^2$, and $3^3 + 4^3 + 5^3 = 6^3$.

The interesting thing about this theorem is that it is so very specific (not only must the *n*th powers be consecutive but they must add up to the next *n*th power) that it ought to be easy to prove by elementary methods. It is, after all, so **obviously** true.

Either it is unexpectedly difficult to prove or I am being dim. In either case, here is the story so far.

Some notation

$$CLF_n(N) = \sum_{1}^{n} (1 - \frac{i}{N})^n$$

so that an equivalent statement of the theorem is " $CLF_n(N) = 1$ has no integer solutions other than those stated".

We will also use N(n) to denote "the largest value of N that satisfies $CLF_n(N) = 1$ ", so that the theorem is "N(n) is not an integer if n > 3", and, for convenience, we will define k(n) = N(n)/n.

Even values of n

Lemma:

For all integers i,

$$i^{2^m} \equiv 0 \text{ or } 1 \pmod{2^{m+1}}$$

(the proof is by induction).

Now let us write $n = 2^m l$, where l is odd, and let us consider residues modulo 2^{m+1} . Then

$$\sum_{1}^{n} (N-i)^{n} \equiv \frac{1}{2}n = 2^{m-1}l$$

since there are an even number of terms and their *n*th powers will be 1 for odd terms and 0 for even ones. From the lemma it follows that N^n must be either 0 or 1 modulo 2^{m+1} . So if CLE is satisfied, either $2^{m-1}l$ must be divisible by 2^{m+1} , which is impossible, or $2^{m-1}l - 1$ must be divisible by 2^{m+1} , which can only happen if m = 1.

So for CLE to be satisfied for even n, we must have

$$n \equiv 2 \pmod{4}$$

Next, consider residues modulo 8. If $n \equiv 2 \pmod{4}$, the consecutive *n*th powers modulo 8 are 0, 1, 0, 1, 0, 1,... so that (as before) the sum of *n n*th powers modulo 8 is $\frac{1}{2}n$. Thus we have either $\frac{1}{2}n \equiv 0$, which is impossible, or $\frac{1}{2}n \equiv 1$. In other words, for CLE to be satisfied for even *n* we must have

$$n \equiv 2 \,(mod \,16)$$

Odd values of n

If n is odd then

$$\sum_{1}^{n} (N-i)^{n} \equiv 0 \pmod{n}$$

(Proof: the series is equivalent to $\sum_{-(n-1)/2}^{(n-1)/2} i^n$, but since n is odd, $(-i)^n + i^n = 0$).

This implies $n \mid N^n$. If n is square-free (ie. has no repeated factors) then it further implies $n \mid N$, which implies that k = N/n is an integer. Since we shall show later in this paper that 1 < k(n) < 2 for n > 3, this is a contradiction and so CLE cannot be satisfied. (For an example of $n \mid N^n \Rightarrow n \mid N$, consider n = 9and N = 12. 12⁹ is divisible by 9, but 12 is not).

Next, consider residues modulo 8. If n is odd then the consecutive nth powers modulo 8 are 0, 1, 0, 3, 0, 5, 0, 7,... To get a perfect nth power as the sum of the previous n nth powers, consider the different possible values of $n \mod 8$:

1: there is no way of getting the sum of 1 term in the series to equal the next term (ie. there are no identical consecutive numbers in the series).

3: the only ways of getting the sum of 3 consecutive terms in the series to equal the next term are 3 + 0 + 5 = 0 and 7 + 0 + 1 = 0.

5: there is no way of getting the sum of 5 terms in the series to equal the next term.

7: any series of 7 terms beginning with a non-zero value will add up to 0 and consequently equal the next term in the series.

Thus for CLE to be satisfied for odd n we must have

 $n \equiv 3 \pmod{4}$

and n must have at least one repeated factor.

[Note also that if we denote by sq(n) the factor by which n fails to be squarefree (so that sq(n) equals n divided by all the primes that divide n: for example, sq(6) = 1, sq(18) = 3, sq(54) = 9) then k(n) must be an integer multiple of 1/sq(n). This may come in useful in further research, since it will be seen that $k(n) \rightarrow 1/ln2$ very rapidly as $n \rightarrow \infty$.]

Evaluating N(n)

We have $CLF_n(N) = \sum_{1}^{n} (1 - i/N)^n$. But $(1 - i/N)^N < e^{-i}$ and $(1 - i/N)^N \to e^{-i}$ as $n \to \infty$, whence $(1 - i/N)^N < e^{-in/N} = e^{-i/k}$. Thus

$$CLF_n(N) < e^{-1/k} + e^{-2/k} + e^{-3/k} + \dots = \frac{e^{-1/k} - e^{-(n+1)/k}}{1 - e^{-1/k}}$$

which gives us the simpler inequality

$$CLF_n(N) < \frac{e^{-1/k}}{1 - e^{-1/k}}$$

Since $CLF_n(N)$ is an increasing function of N and hence of k, and so is the right-hand side of this inequality, it follows that if k_0 is the value of k that makes the RHS equal to 1, the value of k that makes $CLF_n(N) = 1$ will be greater than k_0 .

But RHS=1 means $e^{-1/k} = 1 - e^{-1/k}$, which means $k_0 = 1/ln2$. Thus we have

$$k(n) > 1/ln2$$

Numerical observations

Solving $CLF_n(N) = 1$ numerically, the following facts emerge:

k(n) is a decreasing function of n. Not only is it bounded below by $1/ln^2$ but it actually converges to it.

 $N(n) = 1.5 + \frac{n}{\ln 2} + O(1/n)$. This formula is remarkably accurate: for n > 10 the value of the O(1/n) term is about $\frac{1}{400n}$. Equivalently, we can say $k(n) = \frac{1}{\ln 2} + \frac{1.5}{n} + O(1/n^2)$.

Here is a table of some calculated values:

n	1.5 + n/ln2	N(n)
2	4.385390	5.000000
4	7.270780	7.329472
8	13.041560	13.042709
16	24.583121	24.583271
32	47.666241	47.666320
64	93.832483	93.832523
128	186.164965	186.164986
256	370.829930	370.829940

Summary

For odd n the theorem is proved unless n has a repeated prime factor and $n \equiv 3 \pmod{4}$.

For even n the theorem is proved unless $n \equiv 2 \pmod{16}$.

Calculations show that for the theorem to be false, $N(n) = 1.5 + \frac{n}{ln^2} + \varepsilon(n)$ must be an integer, where $\varepsilon(n) \sim \frac{1}{400n}$.

Future directions

It would be delightful to have a proof of the formula $N(n) = 1.5 + \frac{n}{\ln 2} + O(1/n)$ rather than having to deduce it from the observed results of computations.

On the modular arithmetic side, the case of non-square-free n needs to be looked into in more detail.

On the numerical side, we can rephrase the theorem in terms of rational approximations to 1/ln2: the theorem holds for large n as long as $\frac{n}{ln2}$ is never too close to a half-integer. There is a whole section of Hardy and Wright on approximation of irrationals by rationals that I have never read thoroughly enough.

Another line of attack is the observation that when n is not square-free then k(n) must be a multiple of 1/sq(n). Can we combine this with the observed numerical formula for k(n) and thus obtain a contradiction? It may be that k(n) always manages to squeeze so close to 1/ln2 that there is no room for it to be a multiple of 1/sq(n).

A different line of approach: Bernoulli polynomials

Bernoulli polynomials are an extension of Bernoulli numbers. They obey this recurrence relation: $B_{\mu}(x) = (B + x)^{\mu}$

$$B_n(x) = (B+x)^{\mathsf{T}}$$

where " B^n " is replaced by " B_n " after the right-hand side has been expanded symbolically. They can also be derived as coefficients in the following power series expansion:

$$\frac{te^{tx}}{e^t - 1} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!}$$

The hopeful fact about Bernoulli polynomials in our case is that

$$\sum_{i=a}^{b} i^{n} = \frac{1}{n+1} \{ B_{n+1}(b+1) - B_{n+1}(a) \}$$

which means that the equation whose solutions we are investigating,

$$\sum_{1}^{n} (x-i)^n = x^n$$

boils down to

$$\frac{1}{n+1} \{ B_{n+1}(x) - B_{n+1}(x-n) \} = x^n$$

or even

$$B_{n+1}(x) - B_{n+1}(x-n) = (n+1)x^n$$

Now $B_{n+1}(x)$ is a polynomial of degree n+1 in x, so that in the area we're looking in, with $x \approx n/\ln 2$, $x - n \approx 0.3x$, which means that $B_{n+1}(x - n)$ will be infinitesimal in comparison with $B_{n+1}(x)$, so that the simplified equation

$$B_{n+1}(x) = (n+1)x^n$$

will probably end up having the same asymptotic behaviour as the original.

Another hopeful line of inquiry is that $B_{n+1}(x)$ is the coefficient of $t^{n+1}/(n+1)!$ in the expansion of $te^{tx}/(e^t-1)$, and x^n is the coefficient of $t^n/n!$ in the expansion of e^{tx} , so that $(n+1)x^n$ is the coefficient of $t^{n+1}/(n+1)!$ in the expansion of te^{tx} . As it stands, the only way to make use of this correspondence is to differentiate both $e^{tx}/(e^t-1)$ and $e^{tx} n$ times with respect to t - but it is still good to find some sort of an occurrence of an exponential function, given that we are trying to get a reason for $\ln 2$ appearing in the result.

ADDITIONAL MATERIAL

Sketch of an extension for even n

(This has been copied from the manuscript and has not yet been checked in detail: don't read it until it has been checked and corrected).

We have the standard number-theoretic function $\phi(n)$, which is defined by $\phi(p) = p - 1$ and $\phi(pq) = \phi(p)\phi(q)$. Let us define an alternative, $\hat{\phi}(n)$, which is defined by $\hat{\phi}(p) = p - 1$ and $\hat{\phi}(pq) = LCM(\hat{\phi}(p)\hat{\phi}(q))$.

Lemma:

 $\sum_{0}^{n-1} i^n \neq 0 \ (mod \ M) \ \text{only if} \ \hat{\phi}(M) \mid n.$ Unchecked proof:

If $\hat{\phi}(M) \neq n$ then $\exists j$ such that $j^n \neq 1 \pmod{M}$ and j is relatively prime to M. (this assertion needs checking as well).

Then, still working modulo M:

By relative primality, $0, j, 2j, \ldots, (n-1)j$ is a permutation of $0, 1, 2, \ldots, n-1$

1,

so that $\sum (ij)^n = \sum i^n$, or $j^n \sum i^n = \sum i^n$, or $(j^n - 1) \sum i^n = 0$, which implies $(j^n - 1) \sum i^n = 0$, since $j^n \neq 1 \pmod{M}$.

(this needs correcting, since what we actually need is not only $j^n - 1 \neq j^n$ $0 \pmod{M}$ but also that $j^n - 1$ should be relatively prime to M).

Anyway, if the lemma can be shown to hold to the extent to which it is needed, we can put M = n and deduce that if $\hat{\phi}(M) \nmid n$ then $N^n \equiv 0 \pmod{n}$, which means that we once more get "for CLE to be satisfied, n must have at least one square factor", just as in the case of odd n. But even assuming that the proof can be made to work, this is still a weaker result than in the odd case, since $\hat{\phi}(n) \mid n$ for n = 6 and n = 42, to give just two examples.

There is a further obscure note in the manuscript: "If $\hat{\phi}(n) \mid n$ then all powers are 1 mod n, and a fortiori $1 \mid p(\mid n)$. This makes it harder to constrain N, but not impossible".